
AMSE JOURNALS-AMSE IFRATH Publication –2014-Series: Modelling C; Vol. 75 
Special Handicap; pp 55-69 

Submitted Sept. 2014; Accepted Oct. 31, 2014 
 

Mobile Robot Set Localization for Assisting People at Home 
 

E.Colle, S.Galerne, M.Jubert 

 

IBISCLaboratory, University of Evry, 91-Evry, France 

{Etienne.Colle, Simon.Galerne, Maxime.jubert}@ibisc.univ-evry.fr 

Corresponding author Etienne.Colle@ibisc.univ-evry.fr 

 

Abstract 
The robot, as technology of daily assistance to the person, may be considered only if its 

availability is compatible with the expected service. The useful operating time should be around eight 

hours per 24 hours. One of the major issues is the reliability of the autonomy of the robot. This 

objective can be achieved by relying on the principle of ambient robotics, defined as cooperation 

between the robot and ambient environment. The article focuses on the location of the robot and the 

person weakened at home or in institution such as EHPAD. The robot autonomous localization 

remains a function difficult to make reliable over a long period, in a badly modeled environment. The 

localization method is based on interval analysis applied to measures modeled by a bounded error. 

Evaluations with a simulated and real robot show the interest of this approach. 
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1. Introduction 
 

With the lengthening of life expectancy [1], rising health and pension spending, lower 

consumption of the elderly, aging is often described as a threat to the finances of developed countries 

like the France. However one can note that with aging, time spent in the home increases causing 

rising sectors related to the development of the home: equipment, comfort. Maintenance at home of 

handicapped or elderly people would be one of the ways to develop for, both reduce health costs, but 
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also adapt to the ageing of the population which becomes progressively less mobile and more 

sedentary. 

. The Silver Economy creates growth opportunities for companies in the areas of health, homecare, 

maintenance at home, home rehabilitation, products with a high technological content. The Silver 

Economy creates growth opportunities for companies in the areas of health, Homecare, habitat of the 

equipment of the House, products with a high technological content. The Serenitis experience, 

conducted in 2007 by the SAMU92 of the APHP, focused on the use of a remote service. The system 

consists of a box, connected to a phone, on which are located two buttons: a panic button and a button 

of messaging to deliver a message. The Subscriber wears either a bracelet or a medallion, which are 

an alert button, and a speaker that allow the communication with the remote centre. When occurring 

an emergency call, the call centre adapts the answer depending on the severity of the problem [2]. 

The results of this experiment on 23760 calls showed that 13% of calls are involved displacement 

of firemen or SAMU. On this percentage, 74% had a medical cause of which 69% corresponded to a 

fall. 26% of displacements have therefore proved useless causing mobilization of resources and 

unjustified additional costs. To reduce the number of unnecessary displacements we have proposed, 

in the ANR QuoVADis project [3], among other technologies, the use of a mobile robot equipped 

with audio-visual means. This robot is remotely operated by the operator from the remote centre in 

the domicile of the person, only when occuring alarm. The experiment at the Centre SAMU92 de 

Garches demonstrated the usefulness of the mobile robot to collect information allowing the 

adaptation of the answer. However the remote control of the robot is not usable in operational 

conditions. Indeed, a remote centre manages thousands of subscribers. An operator can have multiple 

subscribers to handle both, while it can simultaneously control only one robot. Make robot usable in 

this context, involves to give him the capacity to automatically perform certain tasks such as search 

of the person when occurring alarm. When the person is found, the remote operator takes in hand the 

robot control. We have recently introduced the concept of ambient Robotics which sees the robot as a 

component of a communicating environment. This idea fits into the broader context of ambient 

intelligence, i.e. devices, called communicating objects, interconnected and integrated into daily 

living environments, in order to participate in certain tasks. The range of uses is infinite, prevention 

of risks (smoke, leakage), remote (remote control), comfort... This is achieved by crossing three 

technology areas: artificial intelligence in the objects of everyday life, (including personal data), 
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secure communication between heterogeneous objects and intuitive interaction with the user which 

implies taking account of the context of use.  The point of view of ambient Robotics is that the robot 

has benefit for cooperating with communicating objects to improve and complete its autonomy 

capabilities. Wee can thus make the services rendered by the robot more reliable. Our team follows 

two complementary ways of research. The first focuses on the design of a computer architecture for 

ambient Robotics able to adapt to the context (heterogeneity, ubiquity) [4]. The second develops 

methods capable to perform functions necessary for the autonomy of the robot by cooperation 

between some communicating objects of the environment and the robot. This article focuses on the 

location of the robot using interval analysis in a context of bounded errors. To return to the 

framework described above, the search for the person by the robot asks to set the path to move the 

robot to the person and therefore the knowledge of their respective location in the home. 

The paper addresses the global localization of mobile robots operating in an indoor cooperative 

environment. The set of home sensors and robot onboard sensors builds a cooperative network robot 

space. Global localization refers to the problem of estimating the position of a robot (xmr, ymr , θmr) 

in a 2D reference frame, given  the real-time data from the robot onboard sensors and the real-time 

data coming from sensors located in the environment. The paper describes a localization method 

based on interval analysis In the context of bounded-error. The method takes account: i) 

heterogeneous measurements, ii)a flexible number of measurements, iii) no statistical knowledge 

about the inaccuracy of measurements, only an admissible interval specified by lower and upper 

values; he interval is deduced from the sensor tolerance given by manufacturers and iv) 

measurements both coming from the robot onboard sensors and from the home sensors. The precise 

characterization of the measurements errors is conceivable in a laboratory but not at a large scale in 

the framework of cooperative network space. The number and the diversity of sensors are obviously a 

difficulty for such specific characterization. The errors are usually expressed in terms of stochastic 

uncertainty models. Due to incomplete information about measurement process, a stochastic error 

approach is questionable. [5] proposes that the measurement error is no longer considered as a 

random variable with known probability density function but assumed as bounded between lower and 

upper values. The set representation is thus poorer but it requires less statistical knowledge on the 

variables. When the error of measurement on experimental data is known only in the form of a 

tolerance, which is often the case for the sensors or the network of sensors used in house automation 



 

 58 

and more generally in the context of ambient intelligence, the set approach is a well-suited approach. 

On the contrary and moreover if the problem is a linear and Gaussian problem, this approach is not 

justified because well solved by probabilistic approaches. The set approach gives a guaranteed result 

i.e. the solution contains surely the value. The set approach remains little used in the field of mobile 

robotics. [6] was interested in the localization of a robot starting from measurements of ultrasonic 

sensors by using the interval analysis and by proposing a treatment of the outliers under certain 

conditions. [7] uses the interval analysis for modelling inaccurate measurements of two 

omnidirectional sensors. This work only uses the measurements provided by onboard sensors for 

robot localization. This idea has been applied by [8] for locating a vehicle with inaccurate telemetric 

data. More recently, in the field of urban vehicles, works uses various sources of outside or onboard 

measurement [11]. [9] was interested in multisensor fusion by propagation of constraints on the 

intervals of measurement provided by the hybridization of a GPS, a gyrometer and an odometer. [10] 

focused on the robustness of set methods in presence of outliers for multi-sensory localization. Our 

solution is based on works of [6], more precisely on the algorithm RSIVIA which allows the 

calculation of solutions by tolerating a number q of outliers. Although the advantages of the 

probabilistic methods, by far the most used and the best known ones, we have chosen a bounded-error 

approach based on the interval analysis for the following reasons.  

The only assumption to verify is that all the errors are bounded. The respect of this assumption is 

difficult to prove but there are techniques to reject outliers [12]. If this assumption is verified, then 

the result is guaranteed. Moreover, as the dimension of the state vector, in our case the x and y 

position and the orientation of the robot, is equal to three, the data processing is relatively simple 

and fast.  [13] presents a bounded-error state estimation (BESE) to the localization problem of an 

outdoor vehicle. Authors claim that the biggest advantage of the BESE approach is the ability to 

solve the localization problem with better consistency than Bayesian approach such as particle 

filters. Experiments point out that the particle filter can locally converge towards a wrong solution 

due to bias measurements which lead to a huge local inconsistency. Similar experiments with an 

Extend Kalman Filter (EKF) show the same phenomenon. EKF strongly underestimates its 

covariance matrix in presence of repeated biased measurements. The efficiency and accuracy of the 

particle filter depend mostly on the number of particles. If the imprecision, i.e. bias and noise, in the 
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available data is high, the number of particles needs to be very large in order to obtain good 

performances. This may give rise to complexity problems for a real-time implementation [14]. 

The paper is organized as follows. Section 2 describes the principles of the method of localization 

by multiangulation based on analysis by bounded errors interval. Section 3 shows how the principle 

can be extended easily to merge heterogeneous measures from various sensors: goniometer, 

rangefinders, odometers, gyroscope, touch...  A solution is proposed to synchronize the measures, 

recurring problem in embedded systems. Results of simulation and actual evaluations, described in 

sections 4 and 5, show some contributions of the approach. Average computing time respects the real 

time constraint, criterion essential in robotics. 

 

2. Set method using goniometric measurements 
 

The objective of our work is the localization of a mobile robot by using measurements available at 

a given moment and the a priori known coordinates of the markers or the sensors. The goal is not the 

building of an environment map but the localization of an assumed-lost robot. The environment is 

modelled by the coordinates of the home markers seen by the robot onboard sensors and by the 

coordinates of the home sensors able to detect the robot. The markers and the sensors are known by 

their identifier which makes it possible to establish their location in the building. 

The localization process is divided into two steps. The first step consists in finding the room of the 

building in which the robot is located by using the specific identifier associated to each measure. As 

said before all sensors and markers are labelled by a specific identifier and associated to one room of 

the building. The second step localizes the robot inside the room by the set approach described below. 

The paper focuses on this second step. 

 

2.1 Set Inversion for Estimating Parameters 
Interval analysis [13] is based on the idea of enclosing real numbers in intervals and real vectors in 

boxes. The analysis by intervals consists in representing the real or integer numbers by intervals 

which contain them. This idea allowed algorithms whose results are guaranteed, for example for 

solving a set of non-linear equations [14], [12], [15].   

An interval [x] is a set of IR which denotes the set of real interval 
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[x] = {x ∈ IR | x− ≤ x ≤ x+, x− ∈ IR, x+ ∈ IR}  (1) 

x− and  x+  are respectively the lower and upper bounds of [x].  

The classical real arithmetic operations can be extended to intervals. Elementary functions also 

can be extended to intervals. 

Given f: IR → IR, such as f ∈ {cos, sin, arctan, sqr, sqrt, log, exp, …}, its interval inclusion 

[f]([x]) is defined on the interval [x] as follow : 

[x] → [f]([x]) = [{f(x) | x ∈ [x]}] (2) 

In addition, if f is only composed of continuous operators and functions and if each variable 

appears at most once in the expression of f, then the natural inclusion function of f is minimal. The 

periodical functions such as trigonometric function require specific treatment. The inclusion function 

is evaluated by dividing f into a continuous set of monotonic subfunctions.  

A subpaving of a box [x] is the union of non-empty and non-overlapping subboxes of [x]. A 

guaranteed approximation of a compact set can be bracketed between an inner subpaving X- and an 

outer subpaving X+ such as X- ⊂ X ⊂ X+. 

Set inversion is the characterisation of 

X = {x ∈ IR n | f(x) ∈Y} = f-1(Y)   (3) 

For any Y ⊂ IRn and for any function f admitting a convergent inclusion function [f], two 

subpavings X- and X+ can be obtained with the algorithm SIVIA (Set Inverter Via Interval Analysis). 

To check if a box [x] is inside or outside X,the inclusion test is composed of  two tests : 

If [f ] ([x]) ⊂ Y then [x] is feasible 

If [f ] ([x]) ∩ Y = ∅ then [x] is unfeasible 

Else [x] is ambiguous that is feasible, infeasible 

Boxes for which these tests failed are bisected except if they are smaller than a required accuracy 

ε. In this case, boxes remain ambiguous and are added to the ΔX subpaving of ambiguous boxes. The 

outer subpaving is X+ = X- ∪ ΔX. The box is assumed to enclose the solution set X. 

The inversion set algorithm can be divided into three steps:  

– Select the prior feasible box [x0] assumed to enclose the solution set X; 

– Determines the state of a box, feasible, unfeasible or ambiguous;   

– Bisect box for reducing ΔX. 
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Algorithm #1          SIVIA ([x0]) 

1  if ( [f] ([x0]) ⊂ Y), [x0] is feasible ; 

2  else if  [f] ([x0]) ∩ Y = ∅, [x0] is unfeasible ; 

3          else if (ω ( [x0] < ε),  [x0] is ambiguous ; 

4                  else 

5                            bisect [x0], [x1], [x2]) ; 

6                            SIVIA ([x1]); 

7                            SIVIA ([x2]) ; 

8                  endif 

9           endif 

     10  endif 

 

This recursive algorithm ends when ω [x] < ε. The number N of bisection is less than  

( ) n
x

N ⎟
⎟
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⎞
⎜
⎜
⎝

⎛
+= 10

ε

ω
 (4) 

with [x0] the prior feasible box and n the dimension of the vector [x]. Since in the case of the 

mobile robot localization the dimension of [x] is three, the solution can be computed with respect to 

real time.   

2.2 Application to Localisation by Multiangulation 
The robot localization is computed from several goniometric measurements by multiangulation. 

Measurements are provided either by robot onboard sensors or/and by home sensors. Onboard robot 

sensors detect markers located in the environment. Markers can be either RFID tags or visual tags 

such as Datamatrix, or reference images.  On the contrary, what we call home sensors are able to 

detect the robot and are fixed on a wall, a ceiling or a corner of the rooms. Whatever sensors, the 

measurement model can be represented by a cone inside which the presence of the robot is 

guaranteed. This model is simple enough for including a large variety of bearing sensors such 

presence detector, laser and US telemeters, camera, RFID … 



 

 62 

In the context of bounded-error method, a measurement λi is defined by an interval bounded by the 

lower and upper limits:      [ ] [ ]iiiii λλλλλ Δ+Δ−= ,      (5) 

The variables to be estimated are the components of the state vector  

x =(xR, yR, θR)T  (6) 

which defines the position and orientation of the robot relatively to the reference frame  Re of the 

environment.  

The coordinates of the environment markers Mj = (xj,yj) and the coordinates and orientation of  the 

environment sensors Cj = (xj,yj, θj) are supposed to be known , to be precise coordinate interval is 

restricted to a scalar value, for sake of readability. However the method we propose can easily take 

into account inaccuracies on the marker and sensor coordinates. 

In our case the problem can be described by two types of equation. In one hand, if a robot sensor 

detects an environment mark Mi, the measurement depends on the marker coordinates Mi (xi,yi,) and 

the state vector. 

R
iR

iR
i xx

yytg θλ −
−
−

= − )(1     (7) 

In the other hand (Fig.1b), if the robot is detected by an environment sensor Ci , the measurement 

depends on the sensor coordinates and orientation Cj (xj,yj,θj) and the state vector. 

j
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jR
j xx

yy
tg θλ −

−

−
= − )(1    (8) 

The state vector x =(xR, yR, θR)T is then to be estimated from the M observations λ = (λ1, …, λM) 

with the associated bounded errors [λ] = ([λ1], …, [λM]) and the known data xi= (xi,yi) and xj= 

(xj,yj,θj).  

Estimating state vector x consists in looking for the set S of all admissible values of x that are 

consistent with the equations (7) and/or (8) and (5). Multiangulation algorithm based on the algorithm 

SIVIA uses f(x)= tg-1(x) which is a discontinuous function on the interval [0,2π]. The estimation of 

the arctangent inclusion function takes into account both the discontinuities and the border effects due 

to the fact we manipulate intervals and not values. If we want to consider most of cases, the range of 

angular measurement can be λi∈ [0,2π] and Δλimax = π/2. Indeed, a presence detector can cover an 

angular sector up to π radians. For each available measure λi, the inclusion test is done using data 

associated to λi. The test fusion is based on the following rule: 
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Algorithm # 2           Fusion rule of  n inclusion tests 

1  if (T1 = = T2 = = … = = Tn ),  Fusion_test = T1 ; 

2  else if ((T1 = =  unfeasible) or … or (Tn = = unfeasible), Fusion test = unfeasible ; 

3          else Fusion_test = ambiguous ; 

4           endif         

5   endif                  

 

This rule leads to reject the result of the algorithm when existing outliers.  For processing outliers 

the fusion rule must to be modified [17]. 

 

3. Localization using heterogeneous measurements 
The approach is able to take into account heterogeneous set of measurements. The inclusion test is 

the same as in the algorithm #1. It only requires another inclusion function well suited to the 

measurement type. The right inclusion function is selected thanks to the identifier associated to the 

sensor. The identifier defines the type of measurement. Combining several measurements is 

performed by the algorithm # 2.  The following examples are taken from home automation sensors. 

Figure 1 shows the features of the three types of measurement with the additional inaccuracy. A ring 

for goniometric measurement (Fig.1a), a ring and a cone for goniometric and range measurement 

(Fig.1b) and a square band for tactile tile (Fig.1c). 

 

 
Fig. 1. Measurement type: a) Range, b) Goniometric and range, c) Tactile tile 

 

Goniometric Measurement 
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As said in previous section, the measurement is an angle λi or λj, the measurement model is given 

either by equation (7) or by equation (8) and the inclusion test is either [f] ([x], [xi] ) ⊂ [λi] or [f] ([x], 

[xj] ) ⊂ [λj] with xi the environment sensor coordinates and xj the marker coordinates. 

Range Measurement 

The measurement is a range di  (Fig.1a), the measurement model is given by  

g(x) ( ) ( )22
jRjR yyxx −+−= and the inclusion test is [g] ([x], [xi] ) ⊂  [di]. 

Goniometric and Range Measurements 

The sensor is supposed able to measure both the angle λi or λj and the range di (Fig.1b) , the 

measurement model is given either by (fi(x) or fj(x)) and g(x) and the inclusion test is either [f] ([x], 

[xi] ) ⊂ [λi] or [f] ([x], [xj] ) ⊂ [λj] and [g] ([x], [xi] ) ⊂  [di]. 

Tactile Tile, Door Crossing Detector and Complex Shape 

The measurement are the coordinates of the center of the tile (Fig.1c), the measurement model is 

xi = xR, yi = yR and the inclusion test is [x] ⊂ [xi]. The door crossing detector is a variation on the tile 

model. It is considered as a narrow tile in which the interval associated to each coordinate [xi] and [yi] 

is different. A complex shape can be considered as a set of tactile tiles. The measurements are { Cei 

(xi, yi)} for i= 1 to n, the measurement model is for i= 1 to n, xi = xR, yi = yR and the inclusion test is 

for i= 1 to n, [x] ⊂ [xi]. The literature offers other examples of measure processing by the set 

approach for localisation, [18] with GPS data or [15] with dead reckoning data. We propose both 

ways to process the latter kind of measurement. 

Dead Reckoning 

The first way is the same as in cases presented previously. The measurements are Δxi, Δyi, ΔθI, the 

measurement model is xRn=xRn-1+Δxn, yRn=yRn-1+Δyn, θRn=θRn-1+Δθn at time n and n-1 and the 

inclusion test is [xn] ⊂ [xn-1]+ [Δxn].  

4. Simulation results 
The simulation aims at showing: i) the feasibility and the interest of the localization method 

whatever the position of the sensors and the markers, ii) the ability to integrate a variable number of 

measurements iii) the ability to mix heterogeneous measurements, iv) the influence of the parameter ε 

on the computing time of localization. The algorithm is implemented on Matlab software. 
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The robot coordinates are specified in the reference frame. The true measures from the sensors are 

computed given the known coordinates of the sensors and the markers. Then a specified inaccuracy is 

added to the measurements in the form of upper and lower bounds. 

The robot position is represented by two subpavings which include the set of the solution boxes, 

the feasible subpaving in red (or dark grey) and the ambiguous subpaving in blue/yellow (or light 

grey).  It is necessary to consider both subpavings to guarantee a set containing all possible robot 

location given the measurements and the noise bounds. The simulation parameters 

are [ ] [ ]iiiii λλλλλ Δ+Δ−= ,  with Δλi = π/36, ε = 0.02 m. Robot Localisation uses heterogeneous 

measurements (Fig. 2). Label C stands for home goniometric measurement, M for robot goniometric 

measurement, Di for range measurement, CGR for home range and goniometric measurement, MGR 

for robot range and goniometric measurement, Da for tile measurement. The true robot configuration 

is (5; 3)m 

 

 
Fig. 2: 2-DOF robot localization with 6 heterogeneous measurements.  

 

4.3 Computing Time of Robot Localisation 
In order to verify if the computing time of localization is compatible with the real time constraint 

of robotic application we have realized two evaluations. The algorithm is implemented on Matlab 

software. The first test evaluates the influence of the localization accuracy and of the parameter 

number on the computing time (Table 1).The simulation parameters are [ ] [ ]iiiii λλλλλ Δ+Δ−= ,  with 



 

 66 

Δλi = π/144, the robot position accuracy εxy varies from 0.5 m to 0.001 m, the robot orientation 

accuracy εθ does not change. The room size is 6x6 m2. The values of table are the mean time for 100 

different positions of the robot. The robot orientation does not change, θR = Pi/4.  In the first row the 

2-dof robot localization is computed from the measurements provided by three goniometric sensors 

located at (3 ; 0), (0 ; 6), (6 ; 6) m. The second row gives the mean time needed for the 3-dof robot 

localisation. In the latter case the experimental conditions are the same as for the first row. The only 

difference is that one of the three measurements is necessarily acquired from the robot in order to 

calculate the robot orientation. A 2-dof robot localization can be computed below a second up to 0.01 

m accuracy. A 3-dof robot localization can be computed below a second up to 0.1 accuracy. The 

robot orientation is time consuming. 

 

Accuracy (m) 
Computing Time (s) 

(xR, yR) (xR, yR, θR) 

0.5 0.01 0.24 

0.1 0.019 0.44 

0.05 0.03 0.22 

0.025 0.05 0.22 

0.015 0.09 1.44 

0.01 0.17 5.29 

 

Table 1. Computing time of the 2-DOF or the 3-DOF robot localization with respect to the 

localisation accuracy 

 

5. Experimental results 
Real experiments have been performed with a physical robot in a smart environment composed of 

two rooms for evaluating the localization method based on interval analysis. 

The global dimensions of the test bed are 9.4m x 6.4m. The rooms are equipped with presence 

sensors, video cameras fixed on the top of the walls, a pan video camera embarked on the robot and 

visual markers. The markers located on the walls are detected by the robot video camera. The 

markers located on the robot are detected by the video cameras fixed on the walls. The robot is 
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positioned at a specified coordinates (xR, yR, θR). Measurements are collected by a gateway which 

handles the exchanges between the localisation computer and the smart environment.  

The Figure 3 shows the robot position estimated by the method from the measurements provided 

by two wall cameras (C1, C2). The feasible subpaving is in red (or dark grey) and the ambiguous 

subpaving in blue/yellow (or light grey).The true robot position is (3, 3.2) ± 0.2 m is depicted by an 

ellipse. A third measurement from the robot video camera not only improves the position accuracy 

but also allows the robot orientation, θR = 3*pi/2 (Fig.12). C1 and C2 represent the two wall cameras 

and M3, the marker detected by the robot video camera.  

 

 
Fig.3. 3-DOF robot localization (x,y) in meters and θ in radians. a) Projection in the x-y plane, b) 

Projection in the y-θ plane. 

 

The results of the real experiments are very close of those obtained in simulation. Such results are 

very useful in poor environment with little sensors because the robot position and orientation are 

modelled as areas. These areas can be more or less large but it is sure that the robot is inside.  

 

6. Conclusion 
The robot localization is based on a interval analysis method applied on data both coming from 

robot and home sensors. The problem of parameter estimation is solved by a set inversion applied on 

error bounded data. As the parameter vector dimension is two or three, the computing time is 

compatible with the real time constraint of mobile robotics as showed in sections 4 and 5. The interest 
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of the solution lies on the ability to integrate a large variety of sensors, from the roughest to the most 

complex one. The method is able to take into account i) a heterogeneous set of measurements, ii) a 

flexible number of measurements, a statistical knowledge on the measurements limited to the 

tolerance; the sensor model only considers that the measurement is bounded between the lower and 

upper limits, iii) the ability to include measurements both coming from the robot onboard sensors and 

from the home sensors. The algorithm is able to provide a result of localization as soon as only one 

measure is available. The results show that the computing time depends little on the number of 

measurements. It is not necessary to develop a strategy for selecting among available measurements. 

We can take all the measurements available.The coordinates of the environment markers Mj = (xj,yj) 

and the coordinates and orientation of  the environment sensors Cj = (xj,yj, θj) are supposed known for 

paper readability. However the method we propose can easily take into account inaccuracies on the 

marker and sensor coordinates. We also explain how to handle environment model inaccuracies. 

Works in progress address the case where the assumption of bounded error is not verified. The 

approaches proposed in the literature for processing outliers have to be improved in order to solve all 

the cases. 
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